Copied to
clipboard

G = C429D14order 448 = 26·7

9th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C429D14, C14.952+ 1+4, (C2×C4)⋊5D28, C4⋊C443D14, (C2×C28)⋊11D4, C284D43C2, (C4×C28)⋊1C22, C4.71(C2×D28), C22⋊D284C2, C4⋊D2811C2, D14⋊C43C22, C4.D283C2, C28.287(C2×D4), (C2×D28)⋊5C22, C42⋊C29D7, (C22×D28)⋊14C2, (C2×C14).69C24, C22⋊C4.93D14, C2.15(C22×D28), C14.13(C22×D4), C22.20(C2×D28), C2.7(D48D14), (C2×C28).144C23, C71(C22.29C24), (C22×C4).190D14, C22.98(C23×D7), (C2×Dic14)⋊51C22, (C2×Dic7).23C23, (C22×D7).19C23, (C23×D7).36C22, C23.157(C22×D7), (C22×C28).229C22, (C22×C14).139C23, (C2×C4×D7)⋊1C22, (C2×C4○D28)⋊18C2, (C7×C4⋊C4)⋊53C22, (C2×C14).50(C2×D4), (C7×C42⋊C2)⋊11C2, (C2×C4).149(C22×D7), (C2×C7⋊D4).100C22, (C7×C22⋊C4).101C22, SmallGroup(448,978)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C429D14
C1C7C14C2×C14C22×D7C23×D7C22×D28 — C429D14
C7C2×C14 — C429D14
C1C22C42⋊C2

Generators and relations for C429D14
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=ab2, dad=a-1, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 2164 in 334 conjugacy classes, 111 normal (21 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C14, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C24, Dic7, C28, C28, D14, C2×C14, C2×C14, C2×C14, C42⋊C2, C22≀C2, C4⋊D4, C4.4D4, C41D4, C22×D4, C2×C4○D4, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×D7, C22×C14, C22.29C24, D14⋊C4, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C2×Dic14, C2×C4×D7, C2×D28, C2×D28, C2×D28, C4○D28, C2×C7⋊D4, C22×C28, C23×D7, C284D4, C4.D28, C22⋊D28, C4⋊D28, C7×C42⋊C2, C22×D28, C2×C4○D28, C429D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, 2+ 1+4, D28, C22×D7, C22.29C24, C2×D28, C23×D7, C22×D28, D48D14, C429D14

Smallest permutation representation of C429D14
On 112 points
Generators in S112
(1 87 26 102)(2 95 27 110)(3 89 28 104)(4 97 22 112)(5 91 23 106)(6 85 24 100)(7 93 25 108)(8 90 15 105)(9 98 16 99)(10 92 17 107)(11 86 18 101)(12 94 19 109)(13 88 20 103)(14 96 21 111)(29 61 54 73)(30 69 55 81)(31 63 56 75)(32 57 50 83)(33 65 51 77)(34 59 52 71)(35 67 53 79)(36 68 48 80)(37 62 49 74)(38 70 43 82)(39 64 44 76)(40 58 45 84)(41 66 46 78)(42 60 47 72)
(1 56 12 43)(2 50 13 44)(3 51 14 45)(4 52 8 46)(5 53 9 47)(6 54 10 48)(7 55 11 49)(15 41 22 34)(16 42 23 35)(17 36 24 29)(18 37 25 30)(19 38 26 31)(20 39 27 32)(21 40 28 33)(57 103 64 110)(58 104 65 111)(59 105 66 112)(60 106 67 99)(61 107 68 100)(62 108 69 101)(63 109 70 102)(71 90 78 97)(72 91 79 98)(73 92 80 85)(74 93 81 86)(75 94 82 87)(76 95 83 88)(77 96 84 89)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(9 14)(10 13)(11 12)(16 21)(17 20)(18 19)(23 28)(24 27)(25 26)(29 39)(30 38)(31 37)(32 36)(33 42)(34 41)(35 40)(43 55)(44 54)(45 53)(46 52)(47 51)(48 50)(49 56)(57 80)(58 79)(59 78)(60 77)(61 76)(62 75)(63 74)(64 73)(65 72)(66 71)(67 84)(68 83)(69 82)(70 81)(85 110)(86 109)(87 108)(88 107)(89 106)(90 105)(91 104)(92 103)(93 102)(94 101)(95 100)(96 99)(97 112)(98 111)

G:=sub<Sym(112)| (1,87,26,102)(2,95,27,110)(3,89,28,104)(4,97,22,112)(5,91,23,106)(6,85,24,100)(7,93,25,108)(8,90,15,105)(9,98,16,99)(10,92,17,107)(11,86,18,101)(12,94,19,109)(13,88,20,103)(14,96,21,111)(29,61,54,73)(30,69,55,81)(31,63,56,75)(32,57,50,83)(33,65,51,77)(34,59,52,71)(35,67,53,79)(36,68,48,80)(37,62,49,74)(38,70,43,82)(39,64,44,76)(40,58,45,84)(41,66,46,78)(42,60,47,72), (1,56,12,43)(2,50,13,44)(3,51,14,45)(4,52,8,46)(5,53,9,47)(6,54,10,48)(7,55,11,49)(15,41,22,34)(16,42,23,35)(17,36,24,29)(18,37,25,30)(19,38,26,31)(20,39,27,32)(21,40,28,33)(57,103,64,110)(58,104,65,111)(59,105,66,112)(60,106,67,99)(61,107,68,100)(62,108,69,101)(63,109,70,102)(71,90,78,97)(72,91,79,98)(73,92,80,85)(74,93,81,86)(75,94,82,87)(76,95,83,88)(77,96,84,89), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(23,28)(24,27)(25,26)(29,39)(30,38)(31,37)(32,36)(33,42)(34,41)(35,40)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50)(49,56)(57,80)(58,79)(59,78)(60,77)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,84)(68,83)(69,82)(70,81)(85,110)(86,109)(87,108)(88,107)(89,106)(90,105)(91,104)(92,103)(93,102)(94,101)(95,100)(96,99)(97,112)(98,111)>;

G:=Group( (1,87,26,102)(2,95,27,110)(3,89,28,104)(4,97,22,112)(5,91,23,106)(6,85,24,100)(7,93,25,108)(8,90,15,105)(9,98,16,99)(10,92,17,107)(11,86,18,101)(12,94,19,109)(13,88,20,103)(14,96,21,111)(29,61,54,73)(30,69,55,81)(31,63,56,75)(32,57,50,83)(33,65,51,77)(34,59,52,71)(35,67,53,79)(36,68,48,80)(37,62,49,74)(38,70,43,82)(39,64,44,76)(40,58,45,84)(41,66,46,78)(42,60,47,72), (1,56,12,43)(2,50,13,44)(3,51,14,45)(4,52,8,46)(5,53,9,47)(6,54,10,48)(7,55,11,49)(15,41,22,34)(16,42,23,35)(17,36,24,29)(18,37,25,30)(19,38,26,31)(20,39,27,32)(21,40,28,33)(57,103,64,110)(58,104,65,111)(59,105,66,112)(60,106,67,99)(61,107,68,100)(62,108,69,101)(63,109,70,102)(71,90,78,97)(72,91,79,98)(73,92,80,85)(74,93,81,86)(75,94,82,87)(76,95,83,88)(77,96,84,89), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(23,28)(24,27)(25,26)(29,39)(30,38)(31,37)(32,36)(33,42)(34,41)(35,40)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50)(49,56)(57,80)(58,79)(59,78)(60,77)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,84)(68,83)(69,82)(70,81)(85,110)(86,109)(87,108)(88,107)(89,106)(90,105)(91,104)(92,103)(93,102)(94,101)(95,100)(96,99)(97,112)(98,111) );

G=PermutationGroup([[(1,87,26,102),(2,95,27,110),(3,89,28,104),(4,97,22,112),(5,91,23,106),(6,85,24,100),(7,93,25,108),(8,90,15,105),(9,98,16,99),(10,92,17,107),(11,86,18,101),(12,94,19,109),(13,88,20,103),(14,96,21,111),(29,61,54,73),(30,69,55,81),(31,63,56,75),(32,57,50,83),(33,65,51,77),(34,59,52,71),(35,67,53,79),(36,68,48,80),(37,62,49,74),(38,70,43,82),(39,64,44,76),(40,58,45,84),(41,66,46,78),(42,60,47,72)], [(1,56,12,43),(2,50,13,44),(3,51,14,45),(4,52,8,46),(5,53,9,47),(6,54,10,48),(7,55,11,49),(15,41,22,34),(16,42,23,35),(17,36,24,29),(18,37,25,30),(19,38,26,31),(20,39,27,32),(21,40,28,33),(57,103,64,110),(58,104,65,111),(59,105,66,112),(60,106,67,99),(61,107,68,100),(62,108,69,101),(63,109,70,102),(71,90,78,97),(72,91,79,98),(73,92,80,85),(74,93,81,86),(75,94,82,87),(76,95,83,88),(77,96,84,89)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(9,14),(10,13),(11,12),(16,21),(17,20),(18,19),(23,28),(24,27),(25,26),(29,39),(30,38),(31,37),(32,36),(33,42),(34,41),(35,40),(43,55),(44,54),(45,53),(46,52),(47,51),(48,50),(49,56),(57,80),(58,79),(59,78),(60,77),(61,76),(62,75),(63,74),(64,73),(65,72),(66,71),(67,84),(68,83),(69,82),(70,81),(85,110),(86,109),(87,108),(88,107),(89,106),(90,105),(91,104),(92,103),(93,102),(94,101),(95,100),(96,99),(97,112),(98,111)]])

82 conjugacy classes

class 1 2A2B2C2D2E2F···2K4A4B4C4D4E4F4G4H4I4J7A7B7C14A···14I14J···14O28A···28L28M···28AP
order1222222···2444444444477714···1414···1428···2828···28
size11112228···282222444428282222···24···42···24···4

82 irreducible representations

dim11111111222222244
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D7D14D14D14D14D282+ 1+4D48D14
kernelC429D14C284D4C4.D28C22⋊D28C4⋊D28C7×C42⋊C2C22×D28C2×C4○D28C2×C28C42⋊C2C42C22⋊C4C4⋊C4C22×C4C2×C4C14C2
# reps1224411143666324212

Matrix representation of C429D14 in GL6(𝔽29)

28280000
210000
00212320
006802
001086
00012321
,
2800000
0280000
00212300
006800
00002123
000068
,
2800000
0280000
00101000
00192200
002091919
002025107
,
100000
27280000
00101000
00221900
009201010
0025202219

G:=sub<GL(6,GF(29))| [28,2,0,0,0,0,28,1,0,0,0,0,0,0,21,6,1,0,0,0,23,8,0,1,0,0,2,0,8,23,0,0,0,2,6,21],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,21,6,0,0,0,0,23,8,0,0,0,0,0,0,21,6,0,0,0,0,23,8],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,10,19,20,20,0,0,10,22,9,25,0,0,0,0,19,10,0,0,0,0,19,7],[1,27,0,0,0,0,0,28,0,0,0,0,0,0,10,22,9,25,0,0,10,19,20,20,0,0,0,0,10,22,0,0,0,0,10,19] >;

C429D14 in GAP, Magma, Sage, TeX

C_4^2\rtimes_9D_{14}
% in TeX

G:=Group("C4^2:9D14");
// GroupNames label

G:=SmallGroup(448,978);
// by ID

G=gap.SmallGroup(448,978);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,184,675,570,80,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=a*b^2,d*a*d=a^-1,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽